
4L ' -1. 

- I  . U NCLASSI FI ED 

Processed b y .  . . 

FOR FEDERAL SCIENTIFIC AND TECHNICAL INFORMATION 
I 1 

of the 

US. DEPARTMENT OF COMMERCE 

DEFENSE DOCUMENTATION CENTER 
DEFENSE SUPPLY AGENCY 

UNCLASSIFIED 



, 

NOTICE TO DEFENSE DOCUMENTATION CENTER USERS 

This document is being distributed by the Clearinghouse for Federal 
Scientific and Technical Information, Department of Commerce, a s  a 
result of a recent agreement between the Department of Defense (DOD) 
and the Department of Commerce (DOC). 

The Clearinghouse is distributing unclassified, unlimited documents 
which are or have been announced in the Technical Abstract Bulletin 
(TAB) of the Defense Documentation Center. 

The price does not apply for registered users of the DDC services. 



F 
c . e  .. 

4 

COMPUTING METHODS IN OPTIMIZATION PROBLEMS 
t h  

APOSR 8 6 5 = 0 3 1 3  
SEVERAL TRAJECTORY OPTIMIZATION 'l'??CJ3NIQVl?l? 

: ,<- . 

R. E. Kopp 

R. M c G i l l  

Research Department 
Gkunman Aircraft  Engineering Corporation 

Bethpage, New York 

D D C  

DDC-IRA E 

Abstract 

This paper  discusses several riumerical approaches 
fo r  solving problems arising i n  optimizing t ra jector ies .  
The basic concepts underlying the grad' n t  method, the 
second var ia t ion method, and a genc <dized Newton-Raphson 
method are  presented in  a very elementary manner by con- 
sidering an ordinary minimum problem with a side con- 
s t r a in t .  The resu l t s  obtained when the basic concepts 
are  extended t o  the variational problem and the computa- 
t ional  algorithms are  then discussed. Finally, i n  the 
concluding remarks, advantages and disadvantages of each 
method are  reviewed, and a comparison i s  made between 
the second var ia t ion method, which might be considered a 
direct  method, and the generalized Nebiton-Raphson method, 
normally considered a s  an indirect  method. 
t h i s  paper provides an application of the three methods 
t o  a specific problem. 

Part  I1 of 

Introduction 

The numerical methods for  the solution of optimiza- 

the d i rec t  approach and the indirect  approach. 
t ion problems have i n  the past  taken two primary direc- 
tions: 
In  the direct  approach, which i s  usually associated with 
a steep descent technique, the constraining system di f -  
fe ren t ia l  equations a re  sa t i s f ied  and an i te ra t ion  made 
on the control signals such that  each new iterate im- 
proves the function t o  be minimized. 
proach involves the development of an i te ra t ive  tech- 
nique for  the solution of the system and Euler-Lagrange 

The indirect  ap- 
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different ia l  equations. Advantages usually associated 
with the steep descent techniques are that  -3nvergence 
does not depend upon the avai labi l i ty  of a good i n i t i a l  
estimate of the opt imal  t ra jectory as  a s tar t ing point, 
and that the techniques seek out re la t ive minima rather  
than merely functionals which are  stationary. The main 
disadvantage associated with the steep descent techniques 
i s  that i n  many practical  applications convergence slows 
as the optimum trajectory i s  approached. 
the indirect methods usually exhibit good convergence as 
the optimal trajectory i s  approached i f  the method con- 
verges a t  a l l .  However, a good i n i t i a l  estimate of the 
opt imal  trajectory may be needed t o  ensure convergence. 

first and second variation theory as associated with the 
steep descent methods. This i s  followed by a discussion 
of a generalized Newton-Raphson method as applied t o  the 
solution of the system and Euler-Lagrange equations. 
Finally, a comparison between the second variation method 
and the generalized Newton-Raphson method i s  made which 
suggests that  the second var ia t ion method i s  equivalent 
t o  a special case of the generalized h’zwton-Raphson 
method. 

Newton-Raphson method have been discussed i n  detai l  by 
the authors and others i n  previous papers, see a 
through (8). Here, the purpose i s  20 r ev im basic con- 
cepts. This can best be accomplished by considering an 
o r d i m r y  n i n i m m ~  proSlero w i t t i  a single side constraint 
and then presenting the resu l t s  derived i n  the above ref- 
erences when the theory i s  extended t o  the variational 
case. 

tat ional procedures using the gradient method, second 
variation method, and the generalized Newton-Raphson 
method to  solve a specific problem. 

In contrast, 

Part  I of th i s  paper presents a brief review of the 

Both the steep descent methods and the generalized 

Part 11 of t h i s  paper discusses the actual compu- 

Problem Formlation 

T5e usual Mayer formulation i s  employed for the 
variational problem. 
ferent ia l  equations 

Given a system of f i r s t  order dif-  

f ind a solution of t h i s  system of equations which sa t i s -  
f i e s  certain specified i n i t i a l  and terminal conditions 
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and mininizes P, a function of the f i n a l  unspecified 
terminal conditions and the terminal t ime. 

P = PIXdlf,  "') x , t f l  
nf 

The x variables are  referred t o  as the s t a t e  variables 
and the y variables as the control variables. Both the 
s ta te  and control variables may be subject to  con- 
st raints ;  however, i n  t h i s  discussion we w i l l  deal p r i -  
marily, though not exclusively, with the case where such 
constraints are absent. 

values of Xi are fixed a t  
It w i l l  be assumed f o r  convenience that  i n i t i a l  

,w x (t ) = x. i =  1, ..., n 9 

=0 i o  
as  well as the f i r s t  m of the terminal values 

* 
Xi(tf)  = x. 2 i =  1, ..., m =, 

L 

(3) 

(4) 

The f ina l  time tf may or may not be specified. In the 
gradient method it w i l l  be ccnvenient t o  r e f o m l a t e  the 
problem such that  a l l  of the f ina l  s t a t e  variables are  
open. 
proximation: 

This is  done by employing a penalty function ap- 

m 
2 + 

+ $  K.(x. - 2 ) 
L J Jf j, 

j=l 

A minimum of P' i s  ns? sought without requiring the 
terminal values of the f i r s t  m s t a t e  variables t o  sat- 
i s f y  Eq. (4) exactly but rather payi-ng a "penalty" for 
deviations. A s  the Kj becomes large the t ra jectory 
which minimizes P '  
jectory which minimizes P with the f ina l  values of the 
f i r s t  m state variables specified. 

variational problem and examine an ordinary minkrum prob- 
lem with a subsidiary constraint. L e t  us consider the 
problem of nrinimizing a function of t v o  variables con- 

is in  sone sense close t o  the tra- 

A t  t h i s  point it i s  advisabl-e t o  digress f r o m  the 

3 
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strained such that a second function of the variables i s  
equal t o  zero. 

Min f (xl J x2) subject t o  g(xl ,x2) = 0 ( 6 )  

We further assume that  both f and g and the i r  f i r s t  
and second par t ia l  derivatives exis t  for  a l l  f i n i t e  val- 
ues of x1 and x2. Expanding both f and g i n  a 
Taylor series and retaining a l l  terms up t o  and including 
second order gives: 

2 
+ 3 fx A x 1  fx  AXlAx2 4 fx2x2Ax2 

- 2 -  
1 1  1 2  

- 

where the barred Eunctions are evaluated - a t  a specific 
value o f  x1 arrd "2. Ve choose XI and E2 such tha t  
the coIlstraint i s  sa t i s f ied  m d  solve €or 
Ax1 in  terms of Ax2 retaining f i r s t  and second order 
terms. 

- -  - 
&IJ "2) -z 0 

4 
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I 

- It is tacitly assumed that gxl 0. An expression for 

the change in f is then obtained by substituting Eq. 
(8) into Eq. (7a). - 

I 

A - -  - 
Therefore, suffictent conditions for f (xl, x2) 

to be a minimum of f(x1, x2) subject to g(x1, x2) 
equal to zero are 

5 
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i 

Of course the conditioas are  symmtric with x1 replaced 
with x2 and x2 replaced with XI. 

g(x1, x2) = 0 i s  adjoined t o  f(x1, x2) by means of a 
Lagrange multiplier 

IR the classical  theory, the constraint 

and S i s  expanded - i n  the neighborhood of some point 
XI, x2, and A considering a l l  variables t o  have inde- 
pendent variations. 

- -  

- - - - -  - - 
S(xl, x2, A) = S(xl, x2, A) + S Axl 4- S Ax2 + gAh 

x1 x2 

2 
f 4 sx Axl 3- Sx AxlAx2 + 4 Sx Ax, 

- 2 -  - 
1 1  1 2  2 2  

- + (78 Ax1 f gx2Ax2)Ah 
x1 

- -  - - 
Sufficient conditicns for S(x1, q, A) 
of S(x1, xzS A) subject t o  g(x1, x2) 
are  

(ii) 

(iii) 

s = f  + h g x  = o  
x1 *1 1 

L 

t o  be a minimum 
equal t o  zero 

These conditions are  exactly equivalent t o  the suff i -  
cient conditions given i n  E q s .  ( 1 O i )  and (1Oii). Fur- 
thermore, i t  should be emphasized that  S i s  merely 
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stationary with respect t o  XI, x2, and A and a mini- 
mum only when g(xl, x2) i s  constrained t o  be equal to 

d zero. 

I Gradient Techniques 
I 
! 
I 

The basis of the steep descent o r  gradient tech- 
niques is t o  search out the s ta t ionaryvalue of 
effective numerical i t e ra t ion  method. To complete the 
analogy between the ordinary minimum problem and the 
Nayer formulation of the variational problem e i ther  
or x2 i s  chosen as a control variable. Although Eq. 
(12) was used t o  determine the sufficient conditions fo r  
f(x1, x2) t o  be a minimum w i t h  g(x1, x2) = 0, the ex- 
pansion is  val id  for  any value z2, and h and need . 

not be a t  a stationary point of 
Ln the gradient method i n i t i a l  estimates of xi, 

x2, and A would be made t h a t  sa t i s fy  g(x1, x2) = 0 
and Axl, Ax2, and Ah determined from f i r s t  order 
term i n  Eq. (12) such tha t  A S  would decrease. Al -  
though usually one would not l i ke ly  use a gradient method 
t o  solve an ordinary minhmn problem of the type dis- 
cussed, we will indicate how the computational algorithm 
might proceed so that  w e  may see the analogy w i t h  the  
variational problem. 

trol variable. A n  i n i t i a l  guess i s  chosen fo r  XI, x2, 
and h such that  g(x1, x2) = 0 and S, = 0. This 
guess w i l l  be designated by the barred quantit ies in  Eq. 
(12).- We can then be sure tha t  AS i s  negative i f  Ax2 
and S are of opposite sign. 

S by an 

x1 

- -  - --  - 
- 

S. 

Let us assume tha t  x2 plays the ro le  of the con- 

1 

x2 

However, the magnitude of Ax2 m u s t  be small enough to 
assure that  the f i r s t  order theory i s  valid. One could 
view the problem as one of minimizing subject t o  a 
constraint on tke magnitude of a ~ 2  i f  the constraint 
were known. 

AS 

I 

7 
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Here, y acts  as another Lagrange multiplier for  a con- 
strained auxiliary m i n i m u m  problem. 
tionary values of S '  gives 

Solving for the sta- 

- 

The magnitude of Ax2 i s  s t i l l  not deterained,for y i s  
unspecified. A one dimensional search i s  normally made 
varying y and calculating S(xl, x2). I 5  t h i s  simple 
problem one could ju s t  as well have perforEd the one 
dimensional search direct ly  on Ax2, however, i n  an n 
dimensional problem E q s .  (15) and (16) become 

n n 
1 

s = 1 SX.AXi 3- y 

i=2 1 i = 2  

For the n dimensional proble-? we can eppreciate how the 
gradient method received i t s  name. 
Xi, i = 2, ...> n components of an n-1 vector, the 
Ax vector i s  i n  Che negative gra?Fe?+, direction of S. 

l e m  have been discussed i n  de ta i l  In  (1) through 0,  and 
therefore, only the resu i t s  are  s m x i z e d  here. The ILL- 
grange multipliers become functicns of time which obey 
the s y s t e m  of different ia l  equations 

If we consider the 

-3 

These concepts as applied t o  the variational prob- 

n .e 

i = 1, ...> n (19) 
df j 

-r, i = -  1 A j a x ;  
L j=1 

+ + +  
For convenience the function H(x, A, y, t) is defined: 
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where 

The superscript denotes the transpose of the vector. 
Equations (1) and (19) can then be put i n  a canonical 
f o m :  

From f i r s t  order theory we may write an equation for  

t f  

- 
Necessary conditions for  x(t)  to be an optimum trajec-  
t o r y  and T(t)  the optimum control a re  

- -  all - 0  
ayk 

and i f  f i na l  t i m e  i s  open 

9 



CO t3 P U Ti N G i ! E Ti4 0 DS IN 0 P TIM I Z A l l  ON PRO B L EMS 

- - 
In  addition, of course, x and h nvst sa t i s fy  Eq. 
(22) 

A s  i n  che case of th2 ordinary minimum problem the 
barred variables i n  Eq.+(22) - need not be optimum trajec-  
tor ies .  Therefore if x i s  a nonoptimm trajectory, the 
gradient method provides an+ef f ective numrical i t e ra t ion  
technique for  choosbg a 6y vector t o  decrease the 
value of P (xf, tf). Just  as  i n  the ordinary minimum 
problem we no;-? consider an auxiliary m i n i m  problem with 
a constraint on Sy adjoined to ensure that  the f i r s t  
order theory remains val id  

1 3  

+ 

+ 
* I  1 3  I -  - 

AI? = P (Xf, tf) - P (Xf, tf) 

a F 
-b 1 'k\ wk(t) 6yE d t  - 4} 

Ir-1 

where wk(t) i s  a weighting function which i n  many cases 
i s  given the value of unity. A cons t r ah t  could also be 
imposed on "utf; horn7ever, i n  practice the determination 
of 6 t f  can best be accomplished i n  a different manna 
which will be exFLain4 ighen the actual coinputatfond 
proce.dure is  discussed. 
minimum prohlelaleads t o  an equation for 6y as a func- 
t ion  of the 

The solution of t h s  auxiliary 

A s  i n  the ordinary minimum problem the undetermined con- 
s tants  Ck appezr and are  found by an independent search 
procedure. 
variable, P '  Y70Uld be calculated for several values of 
c and then a polynomial f i t  made t o  determine the value 
of c which gives the l ea s t  value to P' .  

For example, i f  there i s  only one control 

The actual computer algorithm might proceed a s  fol- 
lows: 

1. Select an i n i t i a l  control time his tory as a 
first estimate and nw ,:r ically integrate the 
system equations (1). 

10 
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2. Te?.m.i%te the trajectory calculations a t  the 
time tf determined when P'  reaches a min- 
irmlm. 
Integrate the adjoint system backwards using 

terminal values deternined by 

During the Sackrmrds-integration calculate 

3. 
ap Ai(Tf) = z. 
If 

4. Integrate - the system equations forward with 
yk = yk + Eyk. for  several values of Ck and 
evaluate P'(xf, tf) again terminating the 

dP' ' trajectory when - - = 0 .  
dtf 

5. Using a curve f i t t i n g  technique find the best 
values for  Ck and use t h i s  value - t o  determine 
the next estisnate for  
turn t o  s t ep  1 and repeat. 

yk: yk = yk + 6Yk. Re- 

This procedure has prwed quite successful i n  the 
past. Several variations or' the method are  also used ex- 
tensively. If constraints are inposed on the control 
variables a mme g e m a l  expression derived from the Pon- 
tryagin 1Iaxi.min Pr inc ip le ,  c9) and 0, i s  used for 
i n  place of Eq. (23). 

P' 

3 

Equation (27) i s  then replaced with the cr i ter ion that  

HG, A, y + 6y, t) +- c yk6& be a minimum within the 
- ) 2 2  +. B 

kF1 
admissible range of She controlvar iables .  

11 
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Although a quadratic constraint was used t o  assure 
tha t  the new trajectory was neighboring t o  the estimated 
trajectory, many 0 t h  !r constraints could a l so  be used. 
One that i s  particularly useful when the optimum control 
i s  "bang-bang" o r  on-off i s  an integral  absolute value 
constraint. In  th i s  case E q .  (27) i s  replaced with the 

cr i ter ion that  H(x, A, y + Fy, t )  + .Z yk16ykl be a 

minimum whils satisfy4ng the constraints on the control 
variablesj It i s  eas i ly  seen tha t  when the 
control variable 6yk appears l inear ly  in H tha t  every 
intermediate control estimate w i l l  be "bang-bang" o r  on- 
o f f .  (The singular case i s  excluded where the coefficient 
yk i n  H i s  ident ical ly  zero over a f i n i t e  interval  of 
time.) The constants yk are  determined by an inde- 
pendent search as  before. 

cussed in  3 and referred t o  a s  the Min H method. 

Here €I(?, A, 7 + 6y, t) i s  minimized by the choice of 
67 satisfying any constraints tha t  might be imposed on 
y. 111 place of the rather  arbi t rary absolute value and 
quadratic metrics previocsly used t o  ensure neighboring 
t ra jector ies  we set 

R 

k=l 

- + + +  -3 - - -  

-2 
y = y + 67. 

Another variation of the gradient method i s  dis- 

+9+ j 
3 

- 
= y  + a 6 y  Y k  k k k  

and an independent search i s  Fade as before t o  determine 
Clk. 

\*hen constmints or? the s t a t e  variables a re  pres- 
ent S G I T L ~  success has been experienced 
t ional penalty function terms are  added t o  the function 
t o  be ruinimized: 

when addi- 

J 

whey U-L i s  the Heaviside step function and 
gj (x, t) < 0 the  s t a t e  constraints.  The constants Bj 
are  allowed t o  approach inf in i ty  as i n  che case when 

- 

12 
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penalty function terms are  used i n  place of satisfying 
terminal end conditions. 

tha t  convergence i s  not contingent upon a good ini t ia l  
estimte of the trajectory.  One i s  assured tha t  the 
value of the function t o  be,minimized i s  decreased i n  
each succeeding i terat ion.  There a re  three principal 
disadvantages of the method. F i r s t ,  the convergence, 
although usually re la t ively good i n  the beginning of the 
i te ra t ive  sequence, often deteriorates severely as the 
optimum trajectory i s  approached. Second, the penalty 
function method required t o  solve problems with specified 
terininal conditions introduces a rb i t r a ry  constants which 
are required t o  be "large" (certainly a re la t ive  masure) 
a t  l e a s t  €or the f ina l  i t e ra t ion .  I f  the constants are 
chosen too large a t  any point i n  the i t e r a t ion  cycle, the 
ne17 control w i l l  tend t o  improve the specified teZXnina1 
values without much weight being placed on improving the 
actual function t o  be minimized. 
too small the specified terminal values w i l l  not be sat- 
is f ied.  Thus i n  practice, the success of the method de- 
pends t o  an appreciable extent upon past  experience in  
making proper choices for  the a rb i t r a ry  constants asso- 
ciated with the penalty function t e r m s .  Third, regions 
of severe i r regular i ty  sometirues develop i n  the control 
variable functions. 
smoothed out. 

The principal advantage of the gradient method is  

If  the constants a re  

In extreme cases these are never 

Secoxd Variation Meth.od 

8 .  

I 

A natural extension of the  gradient techniques 
which come from f i r s t  order theory i s  a thecry which 
would include second order terms i n  the expression f o r  
the &&.nction t o  be minimized. 
dinary minimum problem and the expression f o r  
S(x1, x2, A )  given i n  Eq.  (1.2). Assuming, as before, 
t hz t  zl and z2 sa t i s fy  a = 0 w e  t r e a t  the auxiliary 
problem of finding the stationary value of S consider- 
ing  &,, Ax, ,  and AA as independent variables: 

Let us re turn t o  the or- 

- - & -  s -F s AXl + Sx Ax2 -I- g A h  = 0 
L 

x1 1 1  1 2  x1 

s 4- Sx AXl -I- Sx Ax2 4- g A h  = 0 
x2 1 2  2 2  x2 

= o  

13 
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(he could a l s o  view the problzm as  that  of finding the 
minimum of S(x1, "2, A) 

constraint z~djoined which yequires g, nxl 4- zx 2 Ax2 = 0 .  

In th i s  case the 
m l t i p l i e r .  A step s ize  constraint: may also be required 
as i n  the f i r s t  o r d e r  theory t3 ensure t h a t  the second 
order theory i s  val id .  Thci1 i n  E q .  (31) 

considering - A fixed and a 

1 
Ah would be viewed as another Lagrange 

It should be noted that  E q .  (31) i s  a l inear izat ion of 
E q s .  (13i) and (13ii) and the constrai-ut: equation 
g ( q ,  q> = 0. 

In the variational problem we w i l l  f i r s t  consider 
the case for which the penalty function techniqlJe is  used 
i n  place of satisfying terminal conditions exactly. The 
penalty function tei'm w i l l  then be removed. ar-d the ter- 
minal conditions sat isf ied exactly. 
t ion of the equations i s  quite involved and therefore we 
s u i i r i z e  the resul ts  derived i n  ts). 

The actual deriva- 

14 
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i 
i 
i .  

i 

i 

- - 
Axi(tf) = 6xi(tf) + Xi(tf) 6 t f  ( 3 3 4  

(33f) 
a 

a 2 i  6ys = 0 k = 1, ..., 1 
+ 1 aYkaYs 

s=l 
- 

and the following equation evaluated a t  tf ! 

- xi 
- a n  

Ax. (T,) 4- c L 1 ax, - 'Ykf AYk(T$ 
- xi ap 

n 

J 
i, j=l if jf  k=l i=l f 

+ c axax-- 

f i F t f  

( 33d  
n n 

i=l i=l 

n - a2p Axi(tf) + 7 E t f  = 3 
a t  i=l P 

15 



where 

"I 

-_ 

COMPUTING HETHODS IN OPTIMIZATIOII PROBLEMS 

- - 
oy,(t,] = Eyk + y 6t k f  

These equations, as we might have anticizated from the 
analysis of  the ordinary m i n i r u m  problem,  are a l inear i -  
zation of the necessary condition f o r  a Llinirourn a s  de- 
rived f r o m  the f i r s t  order theory. Azain '+ an integral  
,c:ep size constraint m y  be required f o r  Ey i n  which 
event the diagonal terms of the array 
would have positive constants added t o  them. 

(a2H)/(dyk&yS) 

The actual computational procedure might proceed as 
follows : 

1. 

2. 

3 .  

4 .  

5. 

6 .  

Select an i n i t i a l  control t i ne  his tory as a 
f i r s t  e s t i m t e  and numerically integrate the 
system equations (1) as i n  the gradient - rcethod. 
Terminate the calculation a t  t i m e  tf deter- 
mined such that  
Integrate the adjoint systezl backriards using 
terminal values dctermined by 
hi ( t f )  = (aI")/(6xif) and s t o r e  the i n i t i a l  

values of Ai(t0). 
Generate a partitioned t ransi t ion m a t r i x  for 
the l inearized sys t  i and line-? Lzed adjoint 
s y s t e m  by n simultaneous integratlons of 
l inearized systems b 7 i t h  olie of Lhe G A i ( 0 )  
equal t o  1 and the remining Eh(8) equal to 
zero f o r  each iniegrstiozr. me ~ x i ( 0 )  are 
a l l  equal t o  zero. The horcogeneous part of the 
control law a s  obtained f r o n  Sq. (33f) is sub- 
s t i tu ted  i r :  the l inearized system equations 
€or  the calculation of the partitioned t rans i -  
t i o n  r a t r i x .  
The linearized system and adjoint syscem are 
integrated once again fo r  the irhocogeneous. 
par t  of the solution due t o  the term 
(aTi>/(byk) i n  the control law. Folr this in- 
tegrztion a l l  the S;?i(O) are eqaal t o  zero. 
By l k e a r  algebraic operattons the "i(t0) 
are determined so z s  to  sa t i s fy  E q s .  (33~) .  
( 3 3 4  (33e) ,  and ( 3 3 g ) .  
h o t h e r  integration of the combined systems is 
pexformed with these values of &Ahi(@ and 

(dP')/(dtS) = G. 
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6yk calculated and added t o  jk. Return t o  
step 1 

The penalty function technique is  then 

and repeat the process. 
The process continues u n t i l  the decrements i n  P' 

become small. 
dropyed i n  preference to  satisfying terminal conditions 
exactly. Equations (33)  are modified appropriately. The 
Axi(Ff) for  the f i r s t  m s t a t e  variables are  chosen t o  
make X i ( F f  + F t )  equal t o  x i f .  

'si 

,-u 

-d 

Equation (33c) remains the same for  i = mtl, . . ., n. Of 
course the appropriate summation indices are  changed 
throughout Eq. (33) t o  be consistent with the payoff P 
(the prime i s  dropped) being only a function of l as t  
s t a t e  variables and f ina l  t i m e .  

procedure sketched ear l ie r  when the penalty function 
technique was used. The adjoint system is - integrated 
numerically forward with i n i t i a l  values A *  + 6 h i  , 
i = 1, ..., n of the preceding cycle. The modified 
terminal conditions of the linearized system and adjoint 
system are  sat isf ied using l inear  algebraic procedures 
a s  before. 

tha t  i n  the f ina l  stages of the computational procedure 
the penalty function technique i s  no longer needed and 
each successive approximation attempts t o  sa t i s fy  the 
boundary conditions exactly. 
s tants  associated with the penalty function terms are  
eliminated. 
(penalty function and nonpenalty functions) the step 
s ize  i s  autoaatically determined thus eliminating the 
independent search procedure needed i n  the gradient 
methods. h addition t o  the two main advantages l i s t e d  
above, nost of the information necessary t o  perform the 
generalized Jacobi t e s t  is available. Also, the matrix 
elenients for  the second variational guidance schzme dis- 
cussed i n  (12) are  available as an end resu l t  of the 
computational process. 

additional programming effor t  needed t o  formulate the 
computing algorithm. Hcwever, the over-all actual com- 
puting time i s  considerably l e s s  as discussed i n  (5) and 

n-m 

The computational procedure i s  quite similar to the 

=0 0 

One advantage of the second variation method is 

Thus the undetermined con- 

A second advantage i s  that  i n  both phases 

The disadvantages of the method l i e  chiefly i n  the 

17 
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P a r t  I1 of th i s  paper. In the present s ta te  of the art, 
the method is  applicable on ly  t o  problems where the con- 
trol signal i s  unbounded and continuous. 
bounded control variables which lead t o  an on-off type 
control signal are  being investigated. 

Extensions t o  

Generalized Newton-Raphs on Xethod 

Tqe w i l l  now proceed t o  discuss an indirect  method 
xvhich on the surface does not appear t o  be related t o  the 
steep descent techniques o r  variations thereof. 
method couched i n  the framework of functional analysis i s  
developed i n  (6J from an application of the Contraction 
Napping Principle. In essence, it i s  a generalization of 
a Newton-Raphson method applied t o  the system and Euler- 
Lagrange equations, and contrasts sharply with the more 
usual indirect  approach which has had such a dismal com- 
putational past. 
se t s  of i n i t i a l  conditions are  successively mapped into 
new sets of i n i t i a l  conditions and the different ia l  con- 
s t ra in ts  sat isf ied whereas i n  the generalized Newton- 
Raphson technique a napping i s  produced ihich transforms 
se ts  of functions into improved se ts  of functions which 
do not necessarily sa t i s fy  the different ia l  constraints 
and thus, as one night expect, yields a greater tenacity 
of convergence - 

Let us agaifi consider the ordinary minimum problem 
with a s h g l e  cozlstraint. 
( l3i)  and (Uti) arid the csnstrzint  condition which i s  
analogms t o  the system equations are repeated below. 

The 

For example, i n  the usual procedure 

The Euler-Lagrange equations 

s = fXl+hgXl = 0 
x1 

s = f  + A %  = o  
x2 x2 2 

(35)  

A Newton-Raphson approach t o  the solution of these equa- 
t i ons  might proceed a s  follows. 
xl, “2, and A which need not sa t i s fy  any of the equa- 
t i ons  given i n  E q .  ( 3 5 ) .  Designate these values as 
barred variables as before and expand E q .  (35) i n  a Tay- 
l o r  ser ies  ‘keeping only zero and f i r s t  order terms 

Seiect an i n i t i a l  

18 
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- - - s +z x x a X 1 f S x x A x 2 - f - g  A h = O  
x1 1 1  1 2  x1 

s + s  Axl f Sx AX2 f g Ah = 0 
x2 1 2  2 2  x2 

Equations (36) would then be solved for  A x l ,  Ax2, and 
AA and neb7 values of XI, x2, and A determined. 

x 1 = x1 4- Axl 

x2 = x2 4- Ax2 (37) 

The procedure continues unt i l  Eqs.  (35) are  sa t i s f ied  o r  
un t i l  sone masure of error has decreased suff ic ient ly .  

&en th is  technique is  applied t o  the var ia t ional  
problem, the following equations resu l t .  

ZXi(0) = 0 , i = 1, ..., n 

- 
Axi( t f )  = x - x 

if if 

- - 
AX. (e,) = FX. (t,) + x.Ft, , i = 1, . . . , m 
1 1 1 A .  ( 3 8 4  

19 
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n 3, 

a2Fi - 
+ ax atf 6tf 

if 

and 

- 
evaluated a t  tf. The penalty function technique has not 
been used i n  t h i s  formla t ion .  It should be noted tha t  

20 
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- Y  

-A 

the i n i t i a l  estimates for  t ra jec tor ies  or  the Lagrange 
m u l t i p l i e r  t i m e  h i s tor ies  need not s a t i s fy  their respec- 
tive d i f fe ren t ia l  equations. 

A computational procedure might proceed as follows. 
1. Analytically solve fo r  yk i n  terms of xi, 

h i ,  and t and subst i tute  the control l a w  
in to  the system and adjoint system equations. 
Select a system trajectory and a jo in t  trajec- 
tory tha t  need not sa t i s fy  the d i f fe ren t ia l  
constraints, but tha t  does sa t i s fy  the i n i t i a l  
conditions and perhaps, although not necessar- 
i l y ,  the specified terminal conditions. 
Calculate a partitioned t ransi t ion matrix fo r  
the homogeneous l inearized systems and adjoint 
system as i n  the second var ia t ion method by 
se t t ing  6xi(O) = 0 and l e t t i n g  the 6hi(0) 
take on unity values a s  before. 
Solve the system and adjoint system again for 
the nonhomogeneous p a r t  of the solutions. 
Using l inear  algebraic relationships determine 
the 6 h i ( 0 )  required to  sa t i s fy  boundary con- 
di t ions i n  Eqs. (38). 

5. With these values for  6hi(O) integrate  both 
l inearized systems and add the &(t) and 
8(t) t o  obtain new estimates of z(t) and 

2.  

3 .  

4. 

+ 
h ( t )  . 

6 .  Return t o  s t ep  1 and repeat. 
Because of the additional degcee of freedom given 

by not requiring the t ra jector ies  or the adjoint system 
t o  sa t i s fy  the differencia1 constraints there are m y  
variations fo r  the computational procedme. 
discussion has been given t o  suff ic ient  conditions fo r  
convergence using a s  a metric the maxlntuir~ deviation be- 
tween the approximate trajectory and the actual trajec- 
tory. However, in  practicc it has been Cound that-the 
region of convergence i s  somewhat larger than tha t  de- 
scribed by these sufficient conditions. 
of the numerical application of the Newton-Raphson opera- 
t o r  technique a re  described in  (13). 

In (6) sone 

A few examples 

Conchs ions 

Several methods have been described f o r  the numeri- 
ca l  solution of optimization problems. The gradient 
technique and possibly the second var ia t ion r2thod might: 
be described a s  direct  methods ~7hile the generalized 
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Newton-Raphson technique would no doubt be considered of 
the indirect type. 

tions of this method are in its simplicity. 
gence of the method is not contingcnt upon a good initial 
estimate as a starting condition. It is assured that the 
function to be minimized is decreased after each itera- 
tion cycle. 
straints imposed on tF control variables. Successful 
results have also been obtained when constraints were im- 
posed on the state variables by employing an integral 
type penalty function. The major disadvantage of the 
method is in the way specified terminal conditions must 
be treated using penalty functions which introduce undeo 
termined constants and often slows convergence as the 
optimal trajectory is approached. In addition, the step 
size is unspecified which also introduces additional con- 
stants which must be evaluated by independent search 
techniques. 

Original motivation for the second variation method 
was to improve the iteration technique and eliminate the 
shortcomings of the gradient method. In the final stages 
of the second variation method, the penalty function 
technique is dropped in preference to satisfying speci- 
fied terminal conditions exactly which improves conver- 
gence properties of the iterative technique as the opti- 
mal trajectory is approached. 
is inherently determined by the method eliminating the 
need €or evaiuating undetermined constants by an h d e -  
pendent search as is required in the gradient methods. 
A s  a by-product, the Jacobi test can be performed with 
little additional computation and the matrix coefficients 
needed for the second variation guidance are available 
from the final iteration cycle. The over-all saving in 
computer time seems to be in the order of 50 per cent, at 
least for the limited experience available. The disad- 
vantages of the method are that the computer program is 
significantly more complicated and the rcethod as it 
presently stands is not directly applicable to the case 
where constraints are imposed on the control signals. 

The Generalized Newton-Raphson method is an in- 
direct approach which iterates to a solution of the sys- 
tem and Euler-Lsgrange equations which have mixed bound- 
ary conditions. A n  exainination of the ordinary minimum 
problem with a single side constraint, illustrates that 
the significant difference between the second variation 
method and the generalized Newton-Raphson method is that 

The advantages of the gradient method and varia- 
m e  conver- 

There is no difficulty in handling con- 

In addition, the step size 
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i 
i n  the former the constraint i s  satisfied exactly while 
in the l a t t e r  the constraint i s  satisfied when the method 
converges t o  the optimum value. However, both methods 

One 
degree of freedom available i n  the Newton-Raphson method 
t o  improve the computing algorithm. However, i n  the sec- 
ond variation plethod one can argue certain convergence 
properties since a minimum of the function o r  functional 
i s  being soughtwhen the constraints are  satisfied (at 
least  when the penalty function i s  used) rather than 
seeking out merely stationary values of function or func- 
tional as i s  done i n  the generalized Newton-Raphson 
method. 
Newton-Raphson method i s  a more general form of the sec- 
ond variation method o r  conversely, the second variation 
method i s  a specific approach t o  the generalized Newton- 
Raphson method. This seems t o  be a common meeting ground 
for a direct and indirect approach t o  the solution of op- 
timization problems. 

dogmatically the superiority of any one method over 
another. Each method should be used where i t s  advantages 
can be maximized and disadvantages minimized. A combina- 
tion of two o r  mre of the methods i n  practice might well 
be used t o  advantage. For example, one might i n i t i a l l y  
use a gradient method o r  the second variation method with 
penalty functions t o  sat isfy terminzl constraints so as 
t o  be assured of convergence and then switch t o  the gen- 
eralized Newton-Raphson procedure as  the o p t b  trajec- 
t o ry  i s  approached t o  take advantage of the possible im- 
proved r a t e  of convergence of the l a t t e r  method in  the 
terminal phase of the i terat ion technique. 

three nethods to  a specific problem w i l l  be discussed. 
Some of the salient features of the actual computaticnal 

I 

Oll systematically search out the stationary value of S. 
I should be able t o  take advantage of the additional 

In summary, one might say that  the generalized 

A s  i s  usually the case, it i s  d i f f icu l t  t o  state 

Ln Part I1 of t h i s  paper the application of a l l  -d 

procedures w i l l  be brought out and a conrparison made of 
actual computing time for the different methods. 
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